Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2261565

ABSTRACT

SARS-CoV-2 Omicron BA.2.75 subvariant has evolved to a series of progeny variants carrying several additional mutations in the receptor-binding domain (RBD). Here, we investigated whether and how these single mutations based on BA.2.75 affect the neutralization of currently available anti-RBD monoclonal antibodies (mAbs) with well-defined structural information. Approximately 34% of mAbs maintained effective neutralizing activities against BA.2.75, consistent with that against BA.2, BA.4/5, and BA.2.12.1. Single additional R346T, K356T, L452R, or F486S mutations further facilitated BA.2.75-related progeny variants to escape from broadly neutralizing antibodies (bnAbs) at different degree. Only LY-CoV1404 (bebtelovimab) displayed a first-class neutralization potency and breadth against all tested Omicron subvariants. Overall, these data make a clear connection between virus escape and antibody recognizing antigenic epitopes, which facilitate to develop next-generation universal bnAbs against emerging SARS-CoV-2 variants. Graphical

2.
iScience ; 26(4): 106283, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2261566

ABSTRACT

SARS-CoV-2 Omicron BA.2.75 subvariant has evolved to a series of progeny variants carrying several additional mutations in the receptor-binding domain (RBD). Here, we investigated whether and how these single mutations based on BA.2.75 affect the neutralization of currently available anti-RBD monoclonal antibodies (mAbs) with well-defined structural information. Approximately 34% of mAbs maintained effective neutralizing activities against BA.2.75, consistent with those against BA.2, BA.4/5, and BA.2.12.1. Single additional R346T, K356T, L452R, or F486S mutations further facilitated BA.2.75-related progeny variants to escape from broadly neutralizing antibodies (bnAbs) at different degree. Only LY-CoV1404 (bebtelovimab) displayed a first-class neutralization potency and breadth against all tested Omicron subvariants. Overall, these data make a clear connection between virus escape and antibody recognizing antigenic epitopes, which facilitate to develop next-generation universal bnAbs against emerging SARS-CoV-2 variants.

3.
Nat Immunol ; 24(4): 690-699, 2023 04.
Article in English | MEDLINE | ID: covidwho-2265036

ABSTRACT

The omicron variants of SARS-CoV-2 have substantial ability to escape infection- and vaccine-elicited antibody immunity. Here, we investigated the extent of such escape in nine convalescent patients infected with the wild-type SARS-CoV-2 during the first wave of the pandemic. Among the total of 476 monoclonal antibodies (mAbs) isolated from peripheral memory B cells, we identified seven mAbs with broad neutralizing activity to all variants tested, including various omicron subvariants. Biochemical and structural analysis indicated the majority of these mAbs bound to the receptor-binding domain, mimicked the receptor ACE2 and were able to accommodate or inadvertently improve recognition of omicron substitutions. Passive delivery of representative antibodies protected K18-hACE2 mice from infection with omicron and beta SARS-CoV-2. A deeper understanding of how the memory B cells that produce these antibodies could be selectively boosted or recalled can augment antibody immunity against SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Antibodies, Monoclonal , Antibodies, Viral , Antibodies, Neutralizing
4.
J Med Virol ; 2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2232515

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused extensive loss of life worldwide. Further, the COVID-19 and influenza mix-infection had caused great distress to the diagnosis of the disease. To control illness progression and limit viral spread within the population, a real-time reverse-transcription PCR (RT-PCR) assay for early diagnosis of COVID-19 was developed, but detection was time-consuming (4-6 h). To improve the diagnosis of COVID-19 and influenza, we herein developed a recombinase polymerase amplification (RPA) method for simple and rapid amplification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 and Influenza A (H1N1, H3N2) and B (influenza B). Genes encoding the matrix protein (M) for H1N1, and the hemagglutinin (HA) for H3N2, and the polymerase A (PA) for Influenza B, and the nucleocapsid protein (N), the RNA-dependent-RNA polymerase (RdRP) in the open reading frame 1ab (ORF1ab) region, and the envelope protein (E) for SARS-CoV-2 were selected, and specific primers were designed. We validated our method using SARS-CoV-2, H1N1, H3N2 and influenza B plasmid standards and RNA samples extracted from COVID-19 and Influenza A/B (RT-PCR-verified) positive patients. The method could detect SARS-CoV-2 plasmid standard DNA quantitatively between 102 and 105 copies/ml with a log linearity of 0.99 in 22 min. And this method also be very effective in simultaneous detection of H1N1, H3N2 and influenza B. Clinical validation of 100 cases revealed a sensitivity of 100% for differentiating COVID-19 patients from healthy controls when the specificity was set at 90%. These results demonstrate that this nucleic acid testing method is advantageous compared with traditional PCR and other isothermal nucleic acid amplification methods in terms of time and portability. This method could potentially be used for detection of SARS-CoV-2, H1N1, H3N2 and influenza B, and adapted for point-of-care (POC) detection of a broad range of infectious pathogens in resource-limited settings.

5.
Front Pharmacol ; 13: 983505, 2022.
Article in English | MEDLINE | ID: covidwho-2224854

ABSTRACT

Background: BRII-196 and BRII-198 are two anti-SARS-CoV-2 monoclonal neutralizing antibodies as a cocktail therapy for treating COVID-19 with a modified Fc region that extends half-life. Methods: Safety, tolerability, pharmacokinetics, and immunogenicity of BRII-196 and BRII-198 were investigated in first-in-human, placebo-controlled, single ascending dose phase 1 studies in healthy adults. 44 participants received a single intravenous infusion of single BRII-196 or BRII-198 up to 3,000 mg, or BRII-196 and BRII-198 combination up to 1500/1500 mg, or placebo and were followed up for 180 days. Primary endpoints were incidence of adverse events (AEs) and changes from pre-dose baseline in clinical assessments. Secondary endpoints included pharmacokinetics profiles of BRII-196/BRII-198 and detection of anti-drug antibodies (ADAs). Plasma neutralization activities against SARS-CoV-2 Delta live virus in comparison to post-vaccination plasma were evaluated as exploratory endpoints. Results: All infusions were well-tolerated without systemic or local infusion reactions, dose-limiting AEs, serious AEs, or deaths. Most treatment-emergent AEs were isolated asymptomatic laboratory abnormalities of grade 1-2 in severity. BRII-196 and BRII-198 displayed pharmacokinetics characteristic of Fc-engineered human IgG1 with mean terminal half-lives of 44.6-48.6 days and 72.2-83.0 days, respectively, with no evidence of interaction or significant anti-drug antibody development. Neutralizing activities against the live virus of the SARS-CoV-2 Delta variant were maintained in plasma samples taken on day 180 post-infusion. Conclusion: BRII-196 and BRII-198 are safe, well-tolerated, and suitable therapeutic or prophylactic options for SARS-CoV-2 infection. Clinical Trial Registration: ClinicalTrials.gov under identifiers NCT04479631, NCT04479644, and NCT04691180.

6.
Nat Commun ; 13(1): 7957, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2185833

ABSTRACT

As SARS-CoV-2 Omicron and other variants of concern (VOCs) continue spreading worldwide, development of antibodies and vaccines to confer broad and protective activity is a global priority. Here, we report on the identification of a special group of nanobodies from immunized alpaca with potency against diverse VOCs including Omicron subvariants BA.1, BA.2 and BA.4/5, SARS-CoV-1, and major sarbecoviruses. Crystal structure analysis of one representative nanobody, 3-2A2-4, discovers a highly conserved epitope located between the cryptic and the outer face of the receptor binding domain (RBD), distinctive from the receptor ACE2 binding site. Cryo-EM and biochemical evaluation reveal that 3-2A2-4 interferes structural alteration of RBD required for ACE2 binding. Passive delivery of 3-2A2-4 protects K18-hACE2 mice from infection of authentic SARS-CoV-2 Delta and Omicron. Identification of these unique nanobodies will inform the development of next generation antibody therapies and design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19 , Camelids, New World , Severe acute respiratory syndrome-related coronavirus , Single-Domain Antibodies , Animals , Mice , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19/prevention & control , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus , Antibodies, Viral
7.
Applied Sciences ; 12(24):12891, 2022.
Article in English | MDPI | ID: covidwho-2163219

ABSTRACT

In this paper, a two-dimensional Winograd CNN (Convolutional Neural Network) chip for COVID-19 and pneumonia detection is proposed. In light of the COVID-19 pandemic, many studies have led to a dramatic increase in the effects of the virus on the lungs. Some studies have also pointed out that the clinical application of deep learning in the medical field is also increasing, and it is also pointed out that the radiation impact of CT exposure is more serious than that of X-ray films and that CT exposure is not suitable for viral pneumonia. This study will analyze the results of X-rays trained using CNN architecture and convolutional using Winograd. This research will also set up a popular model architecture to realize four kinds of grayscale image prediction to verify the actual prediction effect on this data. The experimental data is mainly composed of chest X-rays of four different types of grayscales as input material. Among them, the research method of this experiment is to design the basic CNN operation structure of the chip and apply the Winograd calculus method to the convolutional operation. Finally, according to the TSMC 0.18 μm process, the actual chip is produced, and each step is verified to ensure the correctness of the circuit. The experimental results prove that the accuracy of our proposed method reaches 87.87%, and the precision reaches 88.48%. This proves that our proposed method has an excellent recognition rate.

9.
Frontiers in psychology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2126358

ABSTRACT

Since the pandemic of the novel 2019 coronavirus disease (COVID-19), in addition to the harm caused by the disease itself, the psychological damage caused to the public by the pandemic is also a serious problem. The aim of our study was to summarize the systematic reviews/meta-analyses (SRs/MAs) of the prevalence of anxiety, depression and insomnia in different populations during the COVID-19 pandemic and to qualitatively evaluate these SRs/MAs. We searched the Cochrane Library, PubMed and Web of Science to obtain SRs/MAs related to anxiety, depression, and insomnia in different populations during the COVID-19 pandemic. The main populations we studied were healthcare workers (HCWs), college students (CSs), COVID-19 patients (CPs), and the general populations (GPs). A subgroup analysis was performed of the prevalence of psychological disorders. A total of 42 SRs/MAs (8,200,330 participants) were included in calculating and assessing the prevalence of anxiety, depression, and insomnia in these populations. The results of subgroup analysis showed that the prevalence of anxiety in different populations were: HCWs (20–44%), CSs (24–41%), CPs (15–47%), and GPs (22–38%). The prevalence of depression were: HCWs (22–38%), CSs (22–52%), CPs (38–45%), and GPs (16–35%), statistically significant differences between subgroups (p < 0.05). The prevalence of insomnia were: HCWs (28–45%), CSs (27–33%), CPs (34–48%), and GPs (28–35%), statistically significant differences between subgroups (p < 0.05). The comparison revealed a higher prevalence of psychological disorders in the CP group, with insomnia being the most pronounced. The methodological quality of the included SRs/MAs was then evaluated using AMSTAR 2 tool. The results of the methodological quality evaluation showed that 13 SRs/MAs were rated “medium,” 13 were rated “low,” and 16 were rated “very low.” Through the subgroup analysis and evaluation of methodological quality, we found a higher prevalence of insomnia than anxiety and depression among the psychological disorders occurring in different populations during the pandemic, but the sample size on insomnia is small and more high-quality studies are needed to complement our findings.

10.
Virol J ; 19(1): 174, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2139345

ABSTRACT

Since its discovery in the 1990s, the DNA vaccine has been of great interest because of its ability to elicit both humoral and cellular immune responses while showing relative advantages regarding producibility, stability and storage. However, when applied to human subjects, inadequate immunogenicity remains as the greatest challenge for the practical use of DNA vaccines. In this study, we generated a DNA vaccine Δ42PD1-P24 encoding a fusion protein comprised of the HIV-1 Gag p24 antigen and the extracellular domain of murine Δ42PD1, a novel endogenous Toll-like receptor 4 (TLR4) agonist. Using a mouse model, we found that Δ42PD1-P24 DNA vaccine elicited a higher antibody response and an increased number of IFN-γ-producing CD4 and CD8 T cells. Moreover, mice with Δ42PD1-P24 DNA vaccination were protected from a subcutaneous challenge with murine mesothelioma cells expressing the HIV-1 p24 antigen. Importantly, the Δ42PD1-mediated enhancement of immune responses was not observed in TLR4 knockout mice. Collectively, these data demonstrate that the immunogenicity and efficacy of DNA vaccines could be improved by the fusion of the extracellular domain of Δ42PD1 to target the immunogen to dendritic cells.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Vaccines, DNA , Animals , Mice , Humans , HIV-1/genetics , Toll-Like Receptor 4 , CD8-Positive T-Lymphocytes , Immunity, Cellular , HIV Core Protein p24
11.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2045782

ABSTRACT

Monoclonal antibodies (mAbs) targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have demonstrated clinical efficacy in preventing or treating coronavirus disease 2019 (COVID-19), resulting in the emergency use authorization (EUA) for several SARS-CoV-2 targeting mAb by regulatory authority. However, the continuous virus evolution requires diverse mAb options to combat variants. Here we describe two fully human mAbs, amubarvimab (BRII-196) and romlusevimab (BRII-198) that bind to non-competing epitopes on the receptor binding domain (RBD) of spike protein and effectively neutralize SARS-CoV-2 variants. A YTE modification was introduced to the fragment crystallizable (Fc) region of both mAbs to prolong serum half-life and reduce effector function. The amubarvimab and romlusevimab combination retained activity against most mutations associated with reduced susceptibility to previously authorized mAbs and against variants containing amino acid substitutions in their epitope regions. Consistently, the combination of amubarvimab and romlusevimab effectively neutralized a wide range of viruses including most variants of concern and interest in vitro. In a Syrian golden hamster model of SARS-CoV-2 infection, animals receiving combination of amubarvimab and romlusevimab either pre- or post-infection demonstrated less weight loss, significantly decreased viral load in the lungs, and reduced lung pathology compared to controls. These preclinical findings support their development as an antibody cocktail therapeutic option against COVID-19 in the clinic.

12.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2034005

ABSTRACT

Background: BRII-196 and BRII-198 are two anti-SARS-CoV-2 monoclonal neutralizing antibodies as a cocktail therapy for treating COVID-19 with a modified Fc region that extends half-life. Methods: Safety, tolerability, pharmacokinetics, and immunogenicity of BRII-196 and BRII-198 were investigated in first-in-human, placebo-controlled, single ascending dose phase 1 studies in healthy adults. 44 participants received a single intravenous infusion of single BRII-196 or BRII-198 up to 3,000 mg, or BRII-196 and BRII-198 combination up to 1500/1500 mg, or placebo and were followed up for 180 days. Primary endpoints were incidence of adverse events (AEs) and changes from pre-dose baseline in clinical assessments. Secondary endpoints included pharmacokinetics profiles of BRII-196/BRII-198 and detection of anti-drug antibodies (ADAs). Plasma neutralization activities against SARS-CoV-2 Delta live virus in comparison to post-vaccination plasma were evaluated as exploratory endpoints. Results: All infusions were well-tolerated without systemic or local infusion reactions, dose-limiting AEs, serious AEs, or deaths. Most treatment-emergent AEs were isolated asymptomatic laboratory abnormalities of grade 1-2 in severity. BRII-196 and BRII-198 displayed pharmacokinetics characteristic of Fc-engineered human IgG1 with mean terminal half-lives of 44.6–48.6 days and 72.2–83.0 days, respectively, with no evidence of interaction or significant anti-drug antibody development. Neutralizing activities against the live virus of the SARS-CoV-2 Delta variant were maintained in plasma samples taken on day 180 post-infusion. Conclusion: BRII-196 and BRII-198 are safe, well-tolerated, and suitable therapeutic or prophylactic options for SARS-CoV-2 infection. Clinical Trial Registration:ClinicalTrials.gov under identifiers NCT04479631, NCT04479644, and NCT04691180.

13.
Cell Rep ; 40(11): 111335, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-1996065

ABSTRACT

Although thousands of anti-SARS-CoV-2 monoclonal neutralizing antibodies (nAbs) have been identified and well characterized, some crucial events in the development of these nAbs during viral infection remain unclear. Using deep sequencing, we explore the dynamics of antibody repertoire in a SARS-CoV-2-infected donor, from whom the potent and broad nAb P2C-1F11 (the parent version of Brii-196) was previously isolated. Further analysis shows a rapid clonal expansion of some SARS-CoV-2-specific antibodies in early infection. Longitudinal tracing of P2C-1F11 lineage antibodies reveals that these elite nAbs were rare. Using sequence alignment, structure modeling, and bioactivity analysis based on site-mutated assay, we demonstrate that a key substitution F27I in heavy chain contributes significantly to the maturation of P2C-1F11-like antibodies. Overall, our findings elucidate the developmental process and maturation pathway of P2C-1F11, providing some important information for the design of novel immunogens to elicit more potent nAbs against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans
14.
J Vis Exp ; (184)2022 06 08.
Article in English | MEDLINE | ID: covidwho-1911781

ABSTRACT

Lysophospholipids (LPLs) are bioactive lipids that include sphingosine 1-phosphate (S1P), lysophosphatidic acid, etc. S1P, a metabolic product of sphingolipids in the cell membrane, is one of the best-characterized LPLs that regulates a variety of cellular physiological responses via signaling pathways mediated by sphingosine 1-phosphate receptors (S1PRs). This implicated that the S1P-S1PRs signaling system is a remarkable potential therapeutic target for disorders, including multiple sclerosis (MS), autoimmune disorders, cancer, inflammation, and even COVID-19. S1PRs, a small subset of the class A G-protein coupled receptor (GPCR) family, are composed of five subtypes: S1PR1, S1PR2, S1PR3, S1PR4, and S1PR5. The lack of detailed structural information, however, impedes the drug discovery targeting S1PRs. Here, we applied the cryo-electron microscopy method to solve the structure of the S1P-S1PRs complex, and elucidated the mechanism of activation, selective drug recognition, and G-protein coupling by using cell-based functional assays. Other lysophospholipid receptors (LPLRs) and GPCRs can also be studied using this strategy.


Subject(s)
COVID-19 , Receptors, Lysosphingolipid , Cryoelectron Microscopy , Humans , Lysophospholipids , Receptors, Lysosphingolipid/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Sphingosine-1-Phosphate Receptors
15.
Nat Med ; 26(6): 842-844, 2020 06.
Article in English | MEDLINE | ID: covidwho-1900503

ABSTRACT

Respiratory immune characteristics associated with Coronavirus Disease 2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid immune cells from patients with varying severity of COVID-19 and from healthy people by using single-cell RNA sequencing. Proinflammatory monocyte-derived macrophages were abundant in the bronchoalveolar lavage fluid from patients with severe COVID-9. Moderate cases were characterized by the presence of highly clonally expanded CD8+ T cells. This atlas of the bronchoalveolar immune microenvironment suggests potential mechanisms underlying pathogenesis and recovery in COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Single-Cell Analysis , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2
16.
Virol J ; 19(1): 96, 2022 05 28.
Article in English | MEDLINE | ID: covidwho-1869089

ABSTRACT

The SARS-CoV-2 nucleocapsid protein (NP) is an important indicator for the virus infection, highlighting the crucial role of NP-specific monoclonal antibodies (mAbs) used in multiple biochemical assays and clinical diagnosis for detecting the NP antigen. Here, we reported a pair of noncompeting human NP-specific mAbs, named P301-F7 and P301-H5, targeting two distinct linear epitopes on SARS-CoV-2 or SARS-CoV. We evaluated the application of P301-F7 in the analysis of enzyme linked immunosorbent assay, western blot, flow cytometry, immunofluorescence, and focus reduction neutralization test. We for the first time report a broad mAb effectively recognizing various live viruses of SARS-CoV-2 variants including Alpha, Beta, Delta, and Omicron, indicating a wide range of application prospects.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Animals , Antibodies, Monoclonal , COVID-19/diagnosis , Humans , Mice , Mice, Inbred BALB C , Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics
17.
J Clin Virol ; 150-151: 105162, 2022 06.
Article in English | MEDLINE | ID: covidwho-1851456

ABSTRACT

A recently identified SARS-CoV-2 variant, Lambda, has spread to many countries around the world. Here, we measured and evaluated the reduced sensitivity of Lambda variant to the neutralization by plasma polyclonal antibodies elicited by the natural SARS-CoV-2 infection and inactivated vaccine. The combination of two substitutions appearing in the RBD of spike protein (L452Q and F490S) resulted in noticeably reduced neutralization against Lambda variant. F490S contributed more than L452Q in affecting the neutralization. In addition, the neutralization test with 12 published nAbs binding to RBD of SARS-CoV-2 with defined structures suggested that Lambda variant resisted the neutralization by some antibodies from Class 2 and Class 3. Overall, these results suggest that pre-existing antibody neutralization established by natural infection from non-Lambda variants or immunization could be significantly decreased, re-emphasizing the importance of ongoing viral mutation monitoring.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
18.
iScience ; 25(6): 104431, 2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1851361

ABSTRACT

The different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have attracted most public concern because they caused "wave and wave" COVID-19 pandemic. The initial step of viral infection is mediated by the SARS-CoV-2 Spike (S) protein, which mediates the receptor recognition and membrane fusion between virus and host cells. Neutralizing antibodies (nAbs) targeting the S protein of SARS-CoV-2 have become promising candidates for clinical intervention strategy, while multiple studies have shown that different variants have enhanced infectivity and antibody resistance. Here, we explore the structure and function of STS165, a broadly inter-Spike bivalent nAb against SARS-CoV-2 variants and even SARS-CoV, contributing to further understanding of the working mechanism of nAbs.

19.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1674864.v1

ABSTRACT

Tuberculosis (TB) remains a significant health and public issue in many countries. Its incidence and mortality have been decreasing in many countries. The recent COVID-19 could have significant impacts on the transmission and health care for this chronic disease by obligatory facial masking and by affecting healthcare capacities. We asked whether the trend of TB incidence and mortality would be affected by COVID-19 epidemic due to their common air transmission route. We also asked whether the incidence of TB in regions with different COVID-19 incidence would be similar. We obtained the annular new cases of TB and multi-drug resistant TB through Taiwan CDC and estimated the incidence and mortality by the population numbers in 7 administrative regions in Taiwan in 2011-2021. The result showed that incidences of TB and multi-drug resistant TB in recent 10 years show a continuously decreasing trend, even amid the COVID-19 epidemic in 2020-21. In addition, the mortality of TB shows similar decreasing trend in 2020-21. From 2011-2011, the highest incidence of TB was in the southern and eastern Taiwan whereas the lowest incidence of TB was in northern Taiwan. In contrast, the highest incidence of COVID-19 in 2020-21 was in the northern Taiwan while the lowest incidence of COVID-19 in 2020-21 is in the southern and eastern Taiwan. These results indicated that in the low COVID-19 incidence regions of Taiwan, the incidence of TB remained high during COVID-19 pandemic. We concluded that the decreasing trend of incidence and mortality of TB does not change during COVID-19 epidemic in Taiwan. The mask wearing and social distancing could prevent the transmission of COVID-19, however, their effect on the limiting spread of TB may be limited.  


Subject(s)
COVID-19
20.
PLoS Negl Trop Dis ; 16(4): e0010363, 2022 04.
Article in English | MEDLINE | ID: covidwho-1808522

ABSTRACT

COVID-19 caused by SARS-CoV-2 has posed a significant threat to global public health since its outbreak in late 2019. Although there are a few drugs approved for clinical treatment to combat SARS-CoV-2 infection currently, the severity of the ongoing global pandemic still urges the efforts to discover new antiviral compounds. As the viral spike (S) protein plays a key role in mediating virus entry, it becomes a potential target for the design of antiviral drugs against COVID-19. Here, we tested the antiviral activity of berbamine hydrochloride, a bis-benzylisoquinoline alkaloid, against SARS-CoV-2 infection. We found that berbamine hydrochloride could efficiently inhibit SARS-CoV-2 infection in different cell lines. Further experiments showed berbamine hydrochloride inhibits SARS-CoV-2 infection by targeting the viral entry into host cells. Moreover, berbamine hydrochloride and other bis-benzylisoquinoline alkaloids could potently inhibit S-mediated cell-cell fusion. Furthermore, molecular docking results implied that the berbamine hydrochloride could bind to the post fusion core of SARS-CoV-2 S2 subunit. Therefore, berbamine hydrochloride may represent a potential efficient antiviral agent against SARS-CoV-2 infection.


Subject(s)
Benzylisoquinolines , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , Humans , Membrane Fusion , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL